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Abstract. Human fatigue manifests in slower reactions, reduced ability to process information, memory lapses, 

absent-mindedness, decreased awareness, lack of attention, underestimation of risk, reduced coordination etc. 

Chronic, decompensated and acute fatigue in form of drowsiness and falling asleep can lead to errors and 

accidents, ill-health and injury, and reduced productivity of sectors as in equipment operations, transportation. 

Their detection is necessary where they provide an option for the quantification and objective evaluation of 

subjective fatigue levels. Many studies are dealing with this topic for automotive and workability usage to design 

a fatigue detection and countermeasure device. The paper describes research of recent attitude to the 

development of the fatigue condition detection methods with the usage of human biological signal combinations, 

like electroencephalography (EEG), photoplethysmography (PPG), electromyography (EMG), galvanic skin 

response (GSR), temperature, position, respiration and percentage of eye closure (PERCLOS) to obtain 

diagnostic parameters reflecting the state of central nervous, cardiovascular, respiratory and muscular system and 

for monitoring of physiological vital changes. The current research focuses on aspects of non-obtrusive sensor 

signal quality and placement, and selection factors and evaluation of usability and potential integration into a 

wearable platform with the use of current sensor technologies that extend the application of sensors from 

laboratory to everyday environment. The sensor review aims to support development of a platform with multi-

level fatigue monitoring and workability evaluation system designed in order to provide an integrated service in 

the area of operational safety. 
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Introduction 

Human fatigue is a construct of multiple components that are characterized from experience, 

physiology or performance. Fatigue can be seen from two aspects – physiological and psychological 

side. Fatigue as a physiological phenomenon indicates changes in brain wave activity, eye movements, 

head movements, muscle tone and heart rate. If a person is tired, his body temperature, heart rate, 

blood pressure, breathing and adrenaline production are changed. Fatigue affects the person’s mind 

and motivation, as well as psychomotor and cognitive functions. Characteristic features are loss of 

human motivation, exhaustion of feelings, boredom, discomfort and unwillingness to continue 

working. When looking at the manifestations of cognitive processes, there are changes in reaction 

times, memory and coordination of psychomotor functions, information processing and decision 

making. The measurements of physiological signals therefore require a comprehensive assessment by 

using a sensor complex.  

Fatigue affects operation safety, mental performance and attention. A wide range of wearable 

sensors and methods exist to this date designed for biomedical applications of monitoring vital 

parameters and algorithms for analysis of human physiological states [1].  

The previous work of the authors resulted in a fully developed mobile telemedicine screening 

complex (MTSK) with analysis and advice centre software, and research work for development a new 

set of mobile, portable medical device complex for preventive examinations [2]. 

Non-invasive sensors for medical devices are even more used in the healthcare market. With the 

addition of microfluidic chips (Si-based, polymer-based, glass-based) the BioMEMS market, 

represented by silicon MEMS devices used for life sciences and healthcare applications, is expected to 

more than double – from 3 billion USD in 2017 to 6.9 billion USD in 2023, with a Compound Annual 

Growth Rate of 14.9 % from 2017 - 2023 [3]. 

The current study aims to formalize the most recent advancements in wearable sensors, which 

could provide measures of mental fatigue. The listed sensors are significant to the selected method of 

evaluation of fatigue caused physiological parameter changes and are grouped by the organism 

subsystems. The mental fatigue as a base type for this research is chosen in context with its application 

in cognitive workability evaluation according to the project requirements. 
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Sensor evaluation method 

The approach for sensor evaluation proposed by the authors is based on compliance criteria and 

informativity about human functional systems reacting on fatigue. Non-invasive, non-intrusive sensors 

are indispensable elements of ambulatory and long-term health monitoring systems [4]. Wearable 

sensors, being progressively more comfortable and less obtrusive, are appropriate for monitoring an 

individual’s health or wellness without interrupting the daily activities. The sensor devices can 

measure several physiological signals as well as activity and movement of an individual by placing 

them at different locations of the body.  

The following proposed criteria for assessment of sensors have been introduced and discussed 

further in-detail.  

C1. Measurement parameter coverage for the sensor defines the amount of parameters which can 

be acquired from the following sensor. The sensor complex devices considered in the current research 

can capture multiple sensor signals. The C1 criterion describes the amount and variety of measureable 

parameters, where low value means a raw signal from a single sensor, medium value for a sensor with 

multitude of parameters with also discrete processing on the sensor side, and high value characterizes 

multi-sensor devices and sensor complexes with two or more measured human functional systems. 

C2. Distance to the object is categorized in three groups by the approach used – it can be distant, 

in a contact with skin or invasive. Invasive sensors are noticeable in an obtrusive way. Distant sensors 

are not in contact with the human body.  

C3. The environment susceptibility is a grade at which the signal is affected by the environment 

(noise, motion artefacts). Highly affected devices are considered having a high effect to environmental 

conditions (temperature, humidity, movement, electromagnetic interference) and based on previous 

signal processing experience. This criterion can be evaluated by the complexity of signal processing 

required to compensate the signal correction. Highly affected measurements have a high percentage of 

corrupted readings (more than 10 % within 5 minutes), correspondingly 3-5 % for medium and up to 

3 % for low artefact on the total sample amount.  

C4. Type and availability indicates the type of the device used in a medical or consumer grade. 

The availability is associated with the technological readiness of the sensor, where sensors can be 

prototype (laboratory) or available in-market. Criteria C4 and C5 have a hierarchy of related sub 

criteria. 

C5. Mobility indicates whether the sensor is stationary or mobile. For mobile sensors the 

connectivity and battery life are evaluated. Stationary devices have the minimum mobility. For mobile 

sensors the mobility depends on connectivity and battery life. Low mobility sensors have wired 

connections and limited battery life (often less than 30 minutes), while high mobility characterizes 

devices for up to 24hours of battery life and Bluetooth or autonomous data acquisition for more than 3 

hours.  

C6. Wearability assessment evaluates the sensor placement and alternatives of selected positions 

on human body. The research (Zeagler, Clint, 2017) [5] considers specific sensor placement separately 

projected on human body for suitable measurements and also factors that affect the non-intrusiveness 

of the sensor are taken into account. Highly wearable sensors correspond to the body map zones with 

the highest on-body location where functional, technical and social factors are considered. Low 

wearability devices are limited and not adjustable to body position, not practically or socially accepted 

as a wearable device or obstruct and limit body movement in a stationary or semi-stationary 

measurement design.  

C7. Human functional system coverage criterion for a sensor or sensor complex evaluates the 

signal relation to human functional system. The systems and signal relations are summarized and 

listed in Table 1. The sensor complex measurement approach is required to obtain a comprehensive 

evaluation of the physiological state deviation and the level of fatigue manifestations such as 

drowsiness, alertness, reaction time and others [6; 7]. This criterion indicates the sensor relation with 

the physiology and human fatigue manifestation. The C7 criterion consists of mapping the device in a 

space of seven human functional systems.  
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Table 1 

Summary of human functional systems and measured signals 

System Sensor signal Literature 

S1. Cardiovascular PPG raw signal 

R-R interval data 

Heart rate data 

Pulse oximeter (SpO2) 

data 

[8] Bonjyotsna, A., & Roy, S. (2014) 

[9] Thayer JF et al. (2009) 

[10] Chua et al. (2012) 

[11]M. Mahachandra et al. (2012) 

S2. Central nervous  

 

EEG signal 

Power Spectral EEG band 

data  

[12] Niedermeyer E.; da Silva F.L. 

(2004) 

[13] Tandle, A., & Jog, N. (2015) 

[14] Stamps & Hamam (2010) 

S3. Muscles and movement 

 

EMG signal  

EMG Spectral (FFT) data 

EMG RMS data 

Movement acceleration 

data (3 axis) 

[15] Beck T. W (2005) 

[16] Jalloul N. (2018). 

[17] Ugulino, W. et al. (2012) 

S4. Respiratory  Respiration rate data 

 

[18] Krehel, M et al. (2014) 

[19] Makikawa et al. (2014) 

[20] Lee, Y et al. (2018) 

S5. Sensory (vision) PERCLOS data 

Eye closure duration data  

Blink frequency data  

Eye closure and opening 

speed 

Eye angle data 

[21] A. R. Beukman et al. (2016) 

[22] Franco Simini et al. (2011)  

[23] Luis M. Bergasa et al. (2004) 

[24] Chang, W.-D. (2016) 

S6. Thermoregulatory 

 

Temperature data (°C) [25] Kräuchi et al. (2006) 

[26] Shizuka Bando et al. (2017) 

S7. Periphery nervous 

system 

GSR signal (µS) 

GSR component data 

[27] Critchley, H. D. (2002). 

[28] Cole, P.J. et al. (2005) 

Results and discussion 

A comprehensive approach for selection of sensors based on the criteria and analysis of signal 

measurement literature and fatigue research published materials is summarized in Table 2. The given 

seven device sensor applicability is evaluated based on seven criteria and expressed in short form 

results (i.e. “High, “Medium”, “Low”). The evaluation process consists first on the criteria, which 

originate from the device technical information, design evaluation and preliminary tests. Current 

results show that S2 specific device D1 has high mobility, yet highly susceptible to noise. The 

observed devices (D5, D6) of non-contact approach are promising sensors, yet currently available in 

prototype form. Sensor kit D7 has the most measurement coverage and as a medical device it can be 

used as a control method, however, it is obtrusive and the sensors distributed with wires across the 

body. From consumer devices the best suitable is D2, as it has better placement, wearability and 

measurement parameter coverage than D1, D3 and D4. The next stage of sensor evaluation is based on 

the experimental results, where the sensitivity of the measured parameters and the sensor signal 

quality can be statistically evaluated by control methods of voluntary measurements and tests that are 

specific to the problem domain. The sensor comparison and measurements by following a 

measurement protocol are reflected in the authors’ previous published work [29]. 

Multidimensional representation methods can be applied for data visualisation and application of 

fuzzy logic for alignment of criterion values. The current method relies on study of literature analysis, 

therefore, equal criterion weights can be applied to use the current dataset for sorted rank decision 

making about selection of a sensor or device subset. The criterion weights can be applied after 

conducting experiments with given devices and expert evaluation in relation to indices of human 

physiological fatigue where measurement parameter sensitivity is statistically calculated in correlation 
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with human reaction time, mental or physical performance scores or subjective evaluation scores, or 

other problem domain specific generally accepted measures.  

Table 2 

Device evaluation based on criteria 

Criteria 
Device* Sensor 

C1 C2 C3 C4 C5 C6 C7 

D1 
EEG single 

electrode 
Medium Contact 

High noise 

artefact 

sensitivity 

Consumer 

personal use 

Mobile, 

low mobility 

Low, 

limited 

body 

placement 

S2 

In-ear PPG sensor S1 

In-ear temperature 

sensor 
S6 D2 

Ear accelerometer 

High Contact Low 
Consumer 

personal use 

Mobile, 

high 

mobility 

High 

S3 

D3 
ECG single 

electrode chest belt 
Low Contact Low 

Consumer 

personal use 

Mobile, 

high 

mobility 

High S1 

D4 
Active measurement 

GSR 
Low Contact 

Medium, 

sensitivity 

to humidity 

Consumer 

personal use 

Mobile, 

low mobility 
High S7 

D5 IR illuminator High 
Non-

contact 
Medium Prototype Stationary High S5 

D6 
Radio impulse radar 

(respiration sensor) 
High 

Non-

contact 

Highly 

sensitive to 

electro- 

magnetic 

noise 

Prototype Stationary 
Low, not 

wearable 

S1, 

S3, 

S4 

Bipolar EEG 4 

electrodes 
S2 

Accelerometer S3 

Finger PPG S1 

Respiration belt S4 

Active measurement 

GSR 
S7 

ECG 4 electrodes S1 

EMG 4 electrodes S3 

EOG 4 electrodes S5 

Temperature S6 

D7 

Pulse oximeter 

(SpO2) 

High Contact 

Medium, 

differs 

from 

sensor 

Medical device 
Mobile, low 

mobility 

Low, 

limited 

daily usage 

S1 

Note: D1 – Mindwave Mobile 2 [30]; D2 – Cosinuss One [31]; D3 – Polar H7 [32]; D4.Mindfielde 

Sense Skin Response [33]; D5 – Project AWAKE [34]; D6 – Xethru X4M200 [35]; D7 – Nexus 10 

MK II [36]; 

Conclusions 

1. A selection of physiological parameters based on multi-criterion evaluation of measurement 

sensors proposed in the current work shows the multi-sensor consumer device (D2) advantages 

over single electrical activity sensor devices (D1, D3, D4) in terms of parameter coverage. 

2. The medical multi-sensor kit (D7) can be used for control purposes as limited wearability, but the 

stationary prototypes (D5, D6) do not comply with the mobility requirements.  

3. The weights and other criteria, like signal relation with the problem domain, can be obtained from 

sensor experiments and expert evaluations, so that a target function for candidate ranking is set 

and defined by a specific field of application.  
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4. The results of the current research can be used in creation of a decision support system for 

physiological sensor group selection in novelty applications, like human fatigue assessment. 
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